
黄鹏,男,汉族,1988年6月出生于湖北省孝感市。中共党员,博士、副教授、硕士生导师。目前在应用数学系工作,主要从事微分方程与动力系统研究。
一、学习经历和主要讲授课程
大学本科(内蒙古师范大学、数学与应用数学专业);硕士研究生(北京师范大学、基础数学专业);博士研究生(北京师范大学、基础数学专业)
主要讲授课程为:常微分方程、高等数学等
二、主要成果
主要代表性论文:
1. P. Huang,X. Li and B. Liu,Almost periodic solutions for an asymmetric oscillation,Journal of Differential Equations 2017 Vol. 263 Issue 12 Pages 8916-8946.
2. P. Huang and X. Li,Persistence of Invariant Tori in Integrable Hamiltonian Systems Under Almost Periodic Perturbations,Journal of Nonlinear Science 2018 Vol. 28 Issue 5 Pages 1865-1900.
3. Huang,X. Li and B. Liu,Quasi-periodic solutions for an asymmetric oscillation,Nonlinearity 2016 Vol. 29 Issue 10 Pages 3006-3030.
4. P. Huang, X. Li and B. Liu,Invariant curves of smooth quasi-periodic mappings,Discrete and Continuous Dynamical Systems 2018 Vol. 38 Issue 1 Pages 131-154.
5. P. Huang,X. Li and B. Liu,Invariant Curves of Almost Periodic Twist Mappings,Journal of Dynamics and Differential Equations 2022 Vol. 34 Issue 3 Pages 1997-2033.
6. P. Huang,Existence of invariant curves for degenerate almost periodic reversible mappings,Discrete and Continuous Dynamical Systems 2022 Vol. 42 Issue 10 Pages 4853-4886.
7. P. Huang,Reducibility of vector fields on infinite-dimensional tori (in Chinese). Sci. Sin. Math. 2025 Vol. 55 Pages 803–812.
8. P. Huang,Persistence of Invariant Tori in Infinite Dimensional Reversible Systems. Acta Mathematica Sinica (Chinese Series) 2024 Vol. 67 Pages 1207-1220.
9. P. Huang,Persistence of Invariant Tori in Infinite-Dimensional Hamiltonian Systems, Qualitative Theory of Dynamical Systems 2022 Vol. 21 Issue 2 Pages1-21.
10. P. Huang,Existence of Invariant Curves for Degenerate Quasi-periodic Reversible Mappings,Taiwanese Journal of Mathematics 2022 Vol. 26 Issue 4 Pages 765-798.
主持的课题:
1. 2023.1.1-2026.12.31 无穷维Hamilton系统和可逆系统的不变环面的保持性 主持 国家自然科学基金地区科学基金项目 (项目号: 12261014 ) 28万
2. 2020.1.1-2022.12.31 概周期扰动下 Hamilton 系统的不变环面的存在性 结题 国家自然科学基金青年科学基金项目 (项目号: 11901131 ) 22万
3. 2020.3.30-2023.3.30 KAM 理论及其在微分方程中的应用 结题 贵州省科技厅基金 (项目号:黔科合基础[2020]1Y006 ) 10万